Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 38
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Nano Lett ; 24(15): 4528-4536, 2024 Apr 17.
Artigo em Inglês | MEDLINE | ID: mdl-38573311

RESUMO

Enzymes in nature efficiently catalyze chiral organic molecules by elaborately tuning the geometrical arrangement of atoms in the active site. However, enantioselective oxidation of organic molecules by heterogeneous electrocatalysts is challenging because of the difficulty in controlling the asymmetric structures of the active sites on the electrodes. Here, we show that the distribution of chiral kink atoms on high-index facets can be precisely manipulated even on single gold nanoparticles; and this enabled stereoselective oxidation of hydroxyl groups on various sugar molecules. We characterized the crystallographic orientation and the density of kink atoms and investigated their specific interactions with the glucose molecule due to the geometrical structure and surface electrostatic potential.

2.
J Am Chem Soc ; 145(49): 26632-26644, 2023 Dec 13.
Artigo em Inglês | MEDLINE | ID: mdl-38047734

RESUMO

The water oxidation reaction, the most important reaction for hydrogen production and other sustainable chemistry, is efficiently catalyzed by the Mn4CaO5 cluster in biological photosystem II. However, synthetic Mn-based heterogeneous electrocatalysts exhibit inferior catalytic activity at neutral pH under mild conditions. Symmetry-broken Mn atoms and their cooperative mechanism through efficient oxidative charge accumulation in biological clusters are important lessons but synthesis strategies for heterogeneous electrocatalysts have not been successfully developed. Here, we report a crystallographically distorted Mn-oxide nanocatalyst, in which Ir atoms break the space group symmetry from I41/amd to P1. Tetrahedral Mn(II) in spinel is partially replaced by Ir, surprisingly resulting in an unprecedented crystal structure. We analyzed the distorted crystal structure of manganese oxide using TEM and investigated how the charge accumulation of Mn atoms is facilitated by the presence of a small amount of Ir.

3.
J Am Chem Soc ; 145(31): 17220-17231, 2023 Aug 09.
Artigo em Inglês | MEDLINE | ID: mdl-37492900

RESUMO

In electrochemical ethanol oxidation reactions (EOR) catalyzed by Pt metal nanoparticles through a C2 route, the dissociation of the C-C bond in the ethanol molecule can be a limiting factor. Complete EOR processes producing CO2 were always exemplified by the oxidative dehydrogenation of C1 intermediates, a reaction route with less energy utilization efficiency. Here, we report a Pt3Ga/C electrocatalyst with a uniform distribution of Ga over the nanoparticle surface for EOR that produces CO2 at medium potentials (>0.3 V vs SCE) efficiently through direct and sustainable oxidation of C2 intermediate species, i.e., acetaldehyde. We demonstrate the excellent performance of the Pt3Ga-200/C catalyst by using electrochemical in situ Fourier transform infrared reflection spectroscopy (FTIR) and an isotopic labeling method. The atomic interval structure between Pt and Ga makes the surface of nanoparticles nonensembled, avoiding the formation of poisonous *CHx and *CO species via bridge-type adsorption of ethanol molecules. Meanwhile, the electron redistribution from Ga to Pt diminishes the *O/*OH adsorption and CO poisoning on Pt atoms, exposing more available sites for interaction with the C2 intermediates. Furthermore, the dissociation of H2O into *OH is facilitated by the high hydrophilicity of Ga, which is supported by DFT calculations, promoting the deep oxidation of C2 intermediates. Our work represents an extremely rare EOR process that produces CO2 without observing kinetic limitations under medium potential conditions.

4.
Nature ; 611(7937): 688-694, 2022 11.
Artigo em Inglês | MEDLINE | ID: mdl-36352223

RESUMO

Metal halide perovskites are attracting a lot of attention as next-generation light-emitting materials owing to their excellent emission properties, with narrow band emission1-4. However, perovskite light-emitting diodes (PeLEDs), irrespective of their material type (polycrystals or nanocrystals), have not realized high luminance, high efficiency and long lifetime simultaneously, as they are influenced by intrinsic limitations related to the trade-off of properties between charge transport and confinement in each type of perovskite material5-8. Here, we report an ultra-bright, efficient and stable PeLED made of core/shell perovskite nanocrystals with a size of approximately 10 nm, obtained using a simple in situ reaction of benzylphosphonic acid (BPA) additive with three-dimensional (3D) polycrystalline perovskite films, without separate synthesis processes. During the reaction, large 3D crystals are split into nanocrystals and the BPA surrounds the nanocrystals, achieving strong carrier confinement. The BPA shell passivates the undercoordinated lead atoms by forming covalent bonds, and thereby greatly reduces the trap density while maintaining good charge-transport properties for the 3D perovskites. We demonstrate simultaneously efficient, bright and stable PeLEDs that have a maximum brightness of approximately 470,000 cd m-2, maximum external quantum efficiency of 28.9% (average = 25.2 ± 1.6% over 40 devices), maximum current efficiency of 151 cd A-1 and half-lifetime of 520 h at 1,000 cd m-2 (estimated half-lifetime >30,000 h at 100 cd m-2). Our work sheds light on the possibility that PeLEDs can be commercialized in the future display industry.

5.
Adv Mater ; 34(12): e2108979, 2022 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-35044005

RESUMO

Artificial photonic synapses are emerging as a promising implementation to emulate the human visual cognitive system by consolidating a series of processes for sensing and memorizing visual information into one system. In particular, mimicking retinal functions such as multispectral color perception and controllable nonvolatility is important for realizing artificial visual systems. However, many studies to date have focused on monochromatic-light-based photonic synapses, and thus, the emulation of color discrimination capability remains an important challenge for visual intelligence. Here, an artificial multispectral color recognition system by employing heterojunction photosynaptic transistors consisting of ratio-controllable mixed quantum dot (M-QD) photoabsorbers and metal-oxide semiconducting channels is proposed. The biological photoreceptor inspires M-QD photoabsorbers with a precisely designed red (R), green (G), and blue (B)-QD ratio, enabling full-range visible color recognition with high photo-to-electric conversion efficiency. In addition, adjustable synaptic plasticity by modulating gate bias allows multiple nonvolatile-to-volatile memory conversion, leading to chromatic control in the artificial photonic synapse. To ensure the viability of the developed proof of concept, a 7 × 7 pixelated photonic synapse array capable of performing outstanding color image recognition based on adjustable wavelength-dependent volatility conversion is demonstrated.


Assuntos
Pontos Quânticos , Cognição , Humanos , Óptica e Fotônica , Retina , Sinapses
6.
Adv Mater ; 34(2): e2106215, 2022 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-34632653

RESUMO

Color-selective multifunctional and multiplexed photodetectors have attracted considerable interest with the increasing demand for color filter-free optoelectronics which can simultaneously process multispectral signal via minimized system complexity. The low efficiency of color-filter technology and conventional laterally pixelated photodetector array structures often limit opportunities for widespread realization of high-density photodetectors. Here, low-temperature solution-processed vertically stacked full color quantum dot (QD) phototransistor arrays are developed on plastic substrates for high-resolution color-selective photosensor applications. Particularly, the three different-sized/color (RGB) QDs are vertically stacked and pixelated via direct photopatterning using a unique chelating chalcometallate ligand functioning both as solubilizing component and, after photoexposure, a semiconducting cement creating robust, insoluble, and charge-efficient QD layers localized in the a-IGZO transistor region, resulting in efficient wavelength-dependent photo-induced charge transfer. Thus, high-resolution vertically stacked full color QD photodetector arrays are successfully implemented with the density of 5500 devices cm-2 on ultrathin flexible polymeric substrates with highly photosensitive characteristics such as photoresponsivity (1.1 × 104 AW-1 ) and photodetectivity (1.1 × 1018 Jones) as well as wide dynamic ranges (>150 dB).

7.
Nat Commun ; 12(1): 6766, 2021 Nov 19.
Artigo em Inglês | MEDLINE | ID: mdl-34799571

RESUMO

Single-atom-catalysts (SACs) afford a fascinating activity with respect to other nanomaterials for hydrogen evolution reaction (HER), yet the simplicity of single-atom center limits its further modification and utilization. Obtaining bimetallic single-atom-dimer (SAD) structures can reform the electronic structure of SACs with added atomic-level synergistic effect, further improving HER kinetics beyond SACs. However, the synthesis and identification of such SAD structure remains conceptually challenging. Herein, systematic first-principle screening reveals that the synergistic interaction at the NiCo-SAD atomic interface can upshift the d-band center, thereby, facilitate rapid water-dissociation and optimal proton adsorption, accelerating alkaline/acidic HER kinetics. Inspired by theoretical predictions, we develop a facile strategy to obtain NiCo-SAD on N-doped carbon (NiCo-SAD-NC) via in-situ trapping of metal ions followed by pyrolysis with precisely controlled N-moieties. X-ray absorption spectroscopy indicates the emergence of Ni-Co coordination at the atomic-level. The obtained NiCo-SAD-NC exhibits exceptional pH-universal HER-activity, demanding only 54.7 and 61 mV overpotentials at -10 mA cm-2 in acidic and alkaline media, respectively. This work provides a facile synthetic strategy for SAD catalysts and sheds light on the fundamentals of structure-activity relationships for future applications.

8.
Adv Mater ; 33(45): e2105017, 2021 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-34553426

RESUMO

The complete hardware implementation of an optoelectronic neuromorphic computing system is considered as one of the most promising solutions to realize energy-efficient artificial intelligence. Here, a fully light-driven and scalable optoelectronic neuromorphic circuit with metal-chalcogenide/metal-oxide heterostructure phototransistor and photovoltaic divider is proposed. To achieve wavelength-selective neural operation and hardware-based pattern recognition, multispectral light modulated bidirectional synaptic circuits are utilized as an individual pixel for highly accurate and large-area neuromorphic computing system. The wavelength selective control of photo-generated charges at the heterostructure interface enables the bidirectional synaptic modulation behaviors including the excitatory and inhibitory modulations. More importantly, a 7 × 7 neuromorphic pixel circuit array is demonstrated to show the viability of implementing highly accurate hardware-based pattern training. In both the pixel training and pattern recognition simulation, the neuromorphic circuit array with the bidirectional synaptic modulation exhibits lower training errors and higher recognition rates, respectively.


Assuntos
Inteligência Artificial , Luz , Transistores Eletrônicos , Compostos de Cádmio/química , Eletricidade , Gálio/química , Índio/química , Porosidade , Sulfetos/química , Óxido de Zinco/química
9.
Adv Mater ; 33(38): e2100653, 2021 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-34338357

RESUMO

Anisotropic gold nanoplates (NPLs) have raised the interesting possibility that their reduced geometrical symmetry allows fine tuning of their optical properties associated with the excitation of localized surface plasmon resonances (LSPRs). Recent developments have greatly improved LSPR tunability by utilizing the spatial distribution of LSPR modes. However, the nanoscale interplay between defect-induced mechanical strain and the spatial variation of LSPR modes remains poorly understood. In this work, the combination of high spatial- and spectral-resolution mapping of LSPR modes and nanoscale strain mapping using aberration-corrected transmission electron microscopy are applied to investigate the nanoscale distribution of LSPR modes in an ultrathin single hexagonal gold NPL and the effect of defect-induced strains on its LSPR properties. The electron energy-loss spectral maps reveal four distinct LSPR components and intensity distributions of all LSPR modes in a hexagonal gold NPL. Furthermore, the strain maps provide experimental evidence that the tensile strain field induced by a Z-shaped faulted dipole is responsible for the asymmetric distribution of LSPR intensity in a hexagonal gold NPL.

11.
Sci Rep ; 10(1): 219, 2020 Jan 14.
Artigo em Inglês | MEDLINE | ID: mdl-31937814

RESUMO

As organic photodetectors with less than 1 µm pixel size are in demand, a new way of enhancing the sensitivity of the photodetectors is required to compensate for its degradation due to the reduction in pixel size. Here, we used Ag nanoparticles coated with SiOxNy as a light-absorbing layer to realize the scale-down of the pixel size without the loss of sensitivity. The surface plasmon resonance appeared at the interface between Ag nanoparticles and SiOxNy. The plasmon resonance endowed the organic photodetector with boosted photon absorption and external quantum efficiency. As the Ag nanoparticles with SiOxNy are easily deposited on ITO/SiO2, it can be adapted into various organic color image sensors. The plasmon-supported organic photodetector is a promising solution for realizing color image sensors with high resolution below 1 µm.

12.
Org Lett ; 21(24): 9950-9953, 2019 Dec 20.
Artigo em Inglês | MEDLINE | ID: mdl-31799856

RESUMO

Organophotocatalytic C-C and C-B bond formation reactions of aryl halides have been developed in the presence of an organophotosensitizer, 3,7-di([1,1'-biphenyl]-4-yl)-10-(4-(trifluoromethyl)phenyl)-10H-phenoxazine that has highly negative reduction potential at its photoexcited state. The developed reaction conditions are mild and allow the intermolecular C-C bond formation of the generated aryl radical with electron-rich (hetero)arenes and C-B bond formation with bis(pinacolato)diboron.

13.
Nat Commun ; 10(1): 2537, 2019 06 10.
Artigo em Inglês | MEDLINE | ID: mdl-31182709

RESUMO

Hybrid carbon nanotube composites with two different types of fillers have attracted considerable attention for various advantages. The incorporation of micro-scale secondary fillers creates an excluded volume that leads to the increase in the electrical conductivity. By contrast, nano-scale secondary fillers shows a conflicting behavior of the decreased electrical conductivity with micro-scale secondary fillers. Although several attempts have been made in theoretical modeling of secondary-filler composites, the knowledge about how the electrical conductivity depends on the dimension of secondary fillers was not fully understood. This work aims at comprehensive understanding of the size effect of secondary particulate fillers on the electrical conductivity, via the combination of Voronoi geometry induced from Swiss cheese models and the underlying percolation theory. This indicates a transition in the impact of the excluded volume, i.e., the adjustment of the electrical conductivity was measured in cooperation with loading of second fillers with different sizes.

14.
Adv Sci (Weinh) ; 6(6): 1800843, 2019 Mar 20.
Artigo em Inglês | MEDLINE | ID: mdl-30937254

RESUMO

Layered lithium transition-metal oxide materials, e.g., Li(Ni1- x - y Co x Mn y )O2 (NCM) and Li(Ni1- x - y Co x Al y )O2, are the most promising candidates for lithium-ion battery cathodes. They generally consist of ≈10 µm spherical particles densely packed with smaller particles (0.1-1 µm), called secondary and primary particles, respectively. The micrometer- to nanometer-sized particles are critical to the battery performance because they affect the reaction capability of the cathode. Herein, the crystal structure of the primary particles of NCM materials is revisited. Elaborate transmission electron microscopy investigations reveal that the so-called primary particles, often considered as single crystals, are in fact polycrystalline secondary particles. They contain low-angle and exceptionally stable special grain boundaries (GBs) presumably created during aggregation via an oriented attachment mechanism. Therefore, this so-called primary particle is renamed as primary-like particle. More importantly, the low-angle GBs between the smaller true primary particles cause the development of nanocracks within the primary-like particles of Ni-rich NCM cathodes after repetitive electrochemical cycles. In addition to rectifying a prevalent misconception about primary particles, this study provides a previously unknown but important origin of structural degradation in Ni-rich layered cathodes.

15.
Dalton Trans ; 48(26): 9617-9624, 2019 Jul 02.
Artigo em Inglês | MEDLINE | ID: mdl-30848277

RESUMO

Amino triphenolate ligands have been widely used for the synthesis of various transition metal complexes aiming at various applications such as ring-opening polymerization, olefin polymerization, and sulfoxidation. However, the introduction of highly sterically demanding aromatic substituents, such as triisopropylphenyl (TRIP), to the amino triphenolate ligand has not been previously reported probably due to the synthetic difficulty. In six-step reactions using commercial materials, a highly sterically demanding amino triphenolate ligand was successfully synthesized, and early transition metal complexes (Ti, V, Cr, Mn) supported by the ligand were also obtained and fully characterized. In addition, titanium and chromium complexes were further used for catalytic sulfoxidation, and polymerization of ethylene, respectively.

16.
ACS Appl Mater Interfaces ; 10(48): 41487-41496, 2018 Dec 05.
Artigo em Inglês | MEDLINE | ID: mdl-30398854

RESUMO

Solid-phase epitaxy (SPE), a solid-state phase transition of materials from an amorphous to a crystalline phase, is a convenient crystal growing technique. In particular, SPE can be used to grow α-Al2O3 epitaxially with a novel structure that provides an effective substrate for improved performance of light-emitting diodes (LEDs). However, the inevitable two-step phase transformation through the γ-Al2O3 phase hinders the expected improved crystallinity of α-Al2O3, and thereby further enhancement of LED performance. Herein, we provide a fundamental understanding of the SPE growth mechanism from amorphous to metastable γ-Al2O3 using transmission electron microscopy (TEM) and density functional theory (DFT) calculations. The nanobeam precession electron diffraction technique enabled clear visualization of the double-positioning domain distribution in the SPE γ-Al2O3 film and emphasized the need for careful selection of the viewing directions for any investigation of double-positioning domains. Void and stacking fault defects further investigated by high-resolution scanning TEM (STEM) analyses revealed how double-positioning domains and other SPE growth behaviors directly influence the crystallinity of SPE films. Additionally, DFT calculations revealed the origins of SPE growth behavior. The double-positioning γ-Al2O3 domains randomly nucleate from the α-Al2O3 substrate regardless of the α-Al2O3 termination layer, but the large energy requirement for reversal of the γ-Al2O3 stacking sequence prevents it from switching the domain type during the crystal growth. We expect that this study will be useful to improve the crystallinity of SPE γ- and α-Al2O3 films.

17.
ACS Appl Mater Interfaces ; 10(35): 29757-29765, 2018 Sep 05.
Artigo em Inglês | MEDLINE | ID: mdl-30033726

RESUMO

Transition metal oxide-based memristors have widely been proposed for applications toward artificial synapses. In general, memristors have two or more electrically switchable stable resistance states that device researchers see as an analogue to the ion channels found in biological synapses. The mechanism behind resistive switching in metal oxides has been divided into electrochemical metallization models and valence change models. The stability of the resistance states in the memristor vary widely depending on: oxide material, electrode material, deposition conditions, film thickness, and programming conditions. So far, it has been extremely challenging to obtain reliable memristors with more than two stable multivalued states along with endurances greater than ∼1000 cycles for each of those states. Using an oxygen plasma-assisted sputter deposition method of noble metal electrodes, we found that the metal-oxide interface could be deposited with substantially lower interface roughness observable at the nanometer scale. This markedly improved device reliability and function, allowing for a demonstration of memristors with four completely distinct levels from ∼6 × 10-6 to ∼4 × 10-8 S that were tested up to 104 cycles per level. Furthermore through a unique in situ transmission electron microscopy study, we were able to verify a redox reaction-type model to be dominant in our samples, leading to the higher degree of electrical state controllability. For solid-state synapse applications, the improvements to electrical properties will lead to simple device structures, with an overall power and area reduction of at least 1000 times when compared to SRAM.

18.
Adv Mater ; 30(16): e1706261, 2018 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-29513390

RESUMO

Gold is known as the most noblest metal with only face-centered cubic (fcc) structure in ambient conditions. Here, stable hexagonal non-close-packed (ncp) gold nanowires (NWs), having a diameter of about 50 nm and aspect ratios of well over 400, are reported. Au NWs are grown in the confined system of nanotubular TiO2 arrays via photoelectrochemical reduction of HAuCl4 precursors. Some of the resulting Au NWs are proved to have sixfold rotational symmetry, observed by transmission electron microscopy tilting experiments. This new polymorph is identified as a hexagonal ncp-structure with lattice parameters of a = 2.884 Å and c = 7.150 Å, showing quite a large interplanar spacing (c/a ≈ 2.48). That is, Au atoms are close-packed along the ab plane, but each plane is not closely stacked along the c axis like in graphite. The structure is usually expected to be unstable, but the present ncp-2H gold is stable under ambient conditions and intense electron beam irradiation, and shows thermal stability up to 400 °C. Moreover, the resulting physical properties as a result of the corresponding change in electronic structures are investigated by comparing the optical properties of fcc and ncp-2H Au NWs.

19.
Sci Rep ; 6: 30554, 2016 08 01.
Artigo em Inglês | MEDLINE | ID: mdl-27476672

RESUMO

Defect depth profiles of Cu (In1-x,Gax)(Se1-ySy)2 (CIGSS) were measured as functions of pulse width and voltage via deep-level transient spectroscopy (DLTS). Four defects were observed, i.e., electron traps of ~0.2 eV at 140 K (E1 trap) and 0.47 eV at 300 K (E2 trap) and hole traps of ~0.1 eV at 100 K (H1 trap) and ~0.4 eV at 250 K (H2 trap). The open circuit voltage (VOC) deteriorated when the trap densities of E2 were increased. The energy band diagrams of CIGSS were also obtained using Auger electron spectroscopy (AES), X-ray photoelectron spectroscopy (XPS), and DLTS data. These results showed that the valence band was lowered at higher S content. In addition, it was found that the E2 defect influenced the VOC and could be interpreted as an extended defect. Defect depth profile images provided clear insight into the identification of defect state and density as a function of depth around the space charge region.

20.
Sci Rep ; 6: 26204, 2016 05 17.
Artigo em Inglês | MEDLINE | ID: mdl-27184469

RESUMO

We examine exciton recombination, energy-, and charge transfer in multilayer CdS/ZnS quantum dots (QDs) on silver plasmonic resonators using photoluminescence (PL) and excitation spectroscopy along with kinetic modeling and simulations. The exciton dynamics including all the processes are strongly affected by the separation distance between QDs and silver resonators, excitation wavelength, and QD film thickness. For a direct contact or very small distance, interfacial charge transfer and tunneling dominate over intrinsic radiative recombination and exciton energy transfer to surface plasmons (SPs), resulting in PL suppression. With increasing distance, however, tunneling diminishes dramatically, while long-range exciton-SP coupling takes place much faster (>6.5 ns) than intrinsic recombination (~200 ns) causing considerable PL enhancement. The exciton-SP coupling strength shows a strong dependence on excitation wavelengths, suggesting the state-specific dynamics of excitons and the down-conversion of surface plasmons involved. The overlayers as well as the bottom monolayer of QD multilayers exhibit significant PL enhancement mainly through long-range exciton-SP coupling. The overall emission behaviors from single- and multilayer QD films on silver resonators are described quantitatively by a photophysical kinetic model and simulations. The present experimental and simulation results provide important and useful design rules for QD-based light harvesting applications using the exciton-surface plasmon coupling.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...